GaN材料的研究與應(yīng)用是目前全球半導體研究的前沿和熱點,是研制微電子器件、光電子器件的新型半導體材料,并與SIC、金剛石等半導體材料一起,被譽為是繼第一代Ge、Si半導體材料、第二代GaAs、InP化合物半導體材料之后的第三代半導體材料。它具有寬的直接帶隙、強的原子鍵、高的熱導率、化學穩(wěn)定性好(幾乎不被任何酸腐蝕)等性質(zhì)和強的抗輻照能力,在光電子、高溫大功率器件和高頻微波器件應(yīng)用方面有著廣闊的前景.

表1釬鋅礦GaN和閃鋅礦GaN的特性
二、 GaN材料的特性
GaN是極穩(wěn)定的化合物,又是堅硬的高熔點材料,熔點約為1700℃,GaN具有高的電離度,在Ⅲ—Ⅴ族化合物中是最高的(0.5或0.43)。在大氣壓力下,GaN晶體一般是六方纖鋅礦結(jié)構(gòu)。它在一個無胞中有4個原子,原子體積大約為GaAs的一半。因為其硬度高,又是一種良好的涂層保護材料。
2.1GaN的化學特性
在室溫下,GaN不溶于水、酸和堿,而在熱的堿溶液中以非常緩慢的速度溶解。NaOH、H2SO4和H3PO4能較快地腐蝕質(zhì)量差的GaN,可用于這些質(zhì)量不高的GaN晶體的缺陷檢測。GaN在HCL或H2氣下,在高溫下呈現(xiàn)不穩(wěn)定特性,而在N2氣下最為穩(wěn)定。
2.2GaN的結(jié)構(gòu)特性
表1列出了纖鋅礦GaN和閃鋅礦GaN的特性比較。
2.3GaN的電學特性
GaN的電學特性是影響器件的主要因素。未有意摻雜的GaN在各種情況下都呈n型,最好的樣品的電子濃度約為4×1016/cm3。一般情況下所制備的P型樣品,都是高補償?shù)摹?BR> 很多研究小組都從事過這方面的研究工作,其中中村報道了GaN最高遷移率數(shù)據(jù)在室溫和液氮溫度下分別為μn=600cm2/v·s和μn= 1500cm2/v·s,相應(yīng)的載流子濃度為n=4×1016/cm3和n=8×1015/cm3。近年報道的MOCVD沉積GaN層的電子濃度數(shù)值為4 ×1016/cm3、<1016/cm3;等離子激活MBE的結(jié)果為8×103/cm3、<1017/cm3。
未摻雜載流子濃度可控制在1014~1020/cm3范圍。另外,通過P型摻雜工藝和Mg的低能電子束輻照或熱退火處理,已能將摻雜濃度控制在1011~1020/cm3范圍。
2.4GaN的光學特性
人們關(guān)注的GaN的特性,旨在它在藍光和紫光發(fā)射器件上的應(yīng)用。Maruska和Tietjen首先精確地測量了GaN直接隙能量為3.39eV。幾個小組研究了GaN帶隙與溫度的依賴關(guān)系,Pankove等人估算了一個帶隙溫度系數(shù)的經(jīng)驗公式:dE/dT=-6.0×10-4eV/k。 Monemar測定了基本的帶隙為3.503eV±0.0005eV,在1.6kT為Eg=3.503+(5.08×10-4T2)/(T-996) eV。
另外,還有不少人研究GaN的光學特性。
三、GaN材料生長
GaN材料的生長是在高溫下,通過TMGa分解出的Ga與NH3的化學反應(yīng)實現(xiàn)的,其可逆的反應(yīng)方程式為:
Ga+NH3=GaN+3/2H2
生長GaN需要一定的生長溫度,且需要一定的NH3分壓。人們通常采用的方法有常規(guī)MOCVD(包括APMOCVD、LPMOCVD)、等離子體增強MOCVD(PE—MOCVD)和電子回旋共振輔助MBE等。所需的溫度和NH3分壓依次減少。本工作采用的設(shè)備是AP—MOCVD,反應(yīng)器為臥式,并經(jīng)過特殊設(shè)計改裝。用國產(chǎn)的高純TMGa及NH3作為源程序材料,用DeZn作為P型摻雜源,用(0001)藍寶石與(111)硅作為襯底采用高頻感應(yīng)加熱,以低阻硅作為發(fā)熱體,用高純H2作為MO源的攜帶氣體。用高純N2作為生長區(qū)的調(diào)節(jié)。用HALL測量、雙晶衍射以及室溫PL光譜作為GaN的質(zhì)量表征。要想生長出完美的GaN,存在兩個關(guān)鍵性問題,一是如何能避免NH3和TMGa的強烈寄生反應(yīng),使兩反應(yīng)物比較完全地沉積于藍寶石和Si襯底上,二是怎樣生長完美的單晶。為了實現(xiàn)第一個目的,設(shè)計了多種氣流模型和多種形式的反應(yīng)器,最后終于摸索出獨特的反應(yīng)器結(jié)構(gòu),通過調(diào)節(jié)器TMGa管道與襯底的距離,在襯底上生長出了GaN。同時為了確保GaN的質(zhì)量及重復性,采用硅基座作為加熱體,防止了高溫下NH3和石墨在高溫下的劇烈反應(yīng)。對于第二個問題,采用常規(guī)兩步生長法,經(jīng)過高溫處理的藍寶石材料,在550℃,首先生長250A0左右的GaN緩沖層,而后在1050℃生長完美的GaN單晶材料。對于 Si襯底上生長GaN單晶,首先在1150℃生長AlN緩沖層,而后生長GaN結(jié)晶。生長該材料的典型條件如下:
NH3:3L/min
TMGa:20μmol/minV/Ⅲ=6500
N2:3~4L/min
H2:2<1L/min
人們普遍采用Mg作為摻雜劑生長P型GaN,然而將材料生長完畢后要在800℃左右和在N2的氣氛下進行高溫退火,才能實現(xiàn)P型摻雜。本實驗采用 Zn作摻雜劑,DeZ2n/TMGa=0.15,生長溫度為950℃,將高溫生長的GaN單晶隨爐降溫,Zn具有P型摻雜的能力,因此在本征濃度較低時,可望實現(xiàn)P型摻雜。
但是,MOCVD使用的Ga源是TMGa,也有副反應(yīng)物產(chǎn)生,對GaN膜生長有害,而且,高溫下生長,雖然對膜生長有好處,但也容易造成擴散和多相膜的相分離。中村等人改進了MOCVD裝置,他們首先使用了TWO—FLOWMOCVD(雙束流MOCVD)技術(shù),并應(yīng)用此法作了大量的研究工作,取得成功。雙束流MOCVD生長示意圖如圖1所示。反應(yīng)器中由一個H2+NH3+TMGa組成的主氣流,它以高速通過石英噴平行于襯底通入,另一路由H2+N2 形成輔氣流垂直噴向襯底表面,目的是改變主氣流的方向,使反應(yīng)劑與襯底表面很好接觸。用這種方法直接在α—Al2O3基板(C面)生長的GaN膜,電子載流子濃度為1×1018/cm3,遷移率為200cm2/v·s,這是直接生長GaN膜的最好值。 |